3.13 \(\int \csc ^4(e+f x) (a+b \sec ^2(e+f x)) \, dx\)

Optimal. Leaf size=46 \[ -\frac{(a+b) \cot ^3(e+f x)}{3 f}-\frac{(a+2 b) \cot (e+f x)}{f}+\frac{b \tan (e+f x)}{f} \]

[Out]

-(((a + 2*b)*Cot[e + f*x])/f) - ((a + b)*Cot[e + f*x]^3)/(3*f) + (b*Tan[e + f*x])/f

________________________________________________________________________________________

Rubi [A]  time = 0.0461213, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.095, Rules used = {4132, 448} \[ -\frac{(a+b) \cot ^3(e+f x)}{3 f}-\frac{(a+2 b) \cot (e+f x)}{f}+\frac{b \tan (e+f x)}{f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^4*(a + b*Sec[e + f*x]^2),x]

[Out]

-(((a + 2*b)*Cot[e + f*x])/f) - ((a + b)*Cot[e + f*x]^3)/(3*f) + (b*Tan[e + f*x])/f

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 448

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[ExpandI
ntegrand[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[p, 0] && IGtQ[q, 0]

Rubi steps

\begin{align*} \int \csc ^4(e+f x) \left (a+b \sec ^2(e+f x)\right ) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (1+x^2\right ) \left (a+b+b x^2\right )}{x^4} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \left (b+\frac{a+b}{x^4}+\frac{a+2 b}{x^2}\right ) \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{(a+2 b) \cot (e+f x)}{f}-\frac{(a+b) \cot ^3(e+f x)}{3 f}+\frac{b \tan (e+f x)}{f}\\ \end{align*}

Mathematica [A]  time = 0.0463745, size = 84, normalized size = 1.83 \[ -\frac{2 a \cot (e+f x)}{3 f}-\frac{a \cot (e+f x) \csc ^2(e+f x)}{3 f}+\frac{b \tan (e+f x)}{f}-\frac{5 b \cot (e+f x)}{3 f}-\frac{b \cot (e+f x) \csc ^2(e+f x)}{3 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^4*(a + b*Sec[e + f*x]^2),x]

[Out]

(-2*a*Cot[e + f*x])/(3*f) - (5*b*Cot[e + f*x])/(3*f) - (a*Cot[e + f*x]*Csc[e + f*x]^2)/(3*f) - (b*Cot[e + f*x]
*Csc[e + f*x]^2)/(3*f) + (b*Tan[e + f*x])/f

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 73, normalized size = 1.6 \begin{align*}{\frac{1}{f} \left ( a \left ( -{\frac{2}{3}}-{\frac{ \left ( \csc \left ( fx+e \right ) \right ) ^{2}}{3}} \right ) \cot \left ( fx+e \right ) +b \left ( -{\frac{1}{3\, \left ( \sin \left ( fx+e \right ) \right ) ^{3}\cos \left ( fx+e \right ) }}+{\frac{4}{3\,\sin \left ( fx+e \right ) \cos \left ( fx+e \right ) }}-{\frac{8\,\cot \left ( fx+e \right ) }{3}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^4*(a+b*sec(f*x+e)^2),x)

[Out]

1/f*(a*(-2/3-1/3*csc(f*x+e)^2)*cot(f*x+e)+b*(-1/3/sin(f*x+e)^3/cos(f*x+e)+4/3/sin(f*x+e)/cos(f*x+e)-8/3*cot(f*
x+e)))

________________________________________________________________________________________

Maxima [A]  time = 1.00292, size = 58, normalized size = 1.26 \begin{align*} \frac{3 \, b \tan \left (f x + e\right ) - \frac{3 \,{\left (a + 2 \, b\right )} \tan \left (f x + e\right )^{2} + a + b}{\tan \left (f x + e\right )^{3}}}{3 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

1/3*(3*b*tan(f*x + e) - (3*(a + 2*b)*tan(f*x + e)^2 + a + b)/tan(f*x + e)^3)/f

________________________________________________________________________________________

Fricas [A]  time = 0.456512, size = 163, normalized size = 3.54 \begin{align*} -\frac{2 \,{\left (a + 4 \, b\right )} \cos \left (f x + e\right )^{4} - 3 \,{\left (a + 4 \, b\right )} \cos \left (f x + e\right )^{2} + 3 \, b}{3 \,{\left (f \cos \left (f x + e\right )^{3} - f \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

-1/3*(2*(a + 4*b)*cos(f*x + e)^4 - 3*(a + 4*b)*cos(f*x + e)^2 + 3*b)/((f*cos(f*x + e)^3 - f*cos(f*x + e))*sin(
f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**4*(a+b*sec(f*x+e)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.29862, size = 73, normalized size = 1.59 \begin{align*} \frac{3 \, b \tan \left (f x + e\right ) - \frac{3 \, a \tan \left (f x + e\right )^{2} + 6 \, b \tan \left (f x + e\right )^{2} + a + b}{\tan \left (f x + e\right )^{3}}}{3 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

1/3*(3*b*tan(f*x + e) - (3*a*tan(f*x + e)^2 + 6*b*tan(f*x + e)^2 + a + b)/tan(f*x + e)^3)/f